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Abstract. Multidimensional dimensionless Luikov problem in capillary porous media is
analytically solved by the GITT (Generalised Integral Transform Technique) formalisms for the
associated temperature and moisture potentials behaviour. Linear transport coefficients, three-
dimensional geometry and automatic global error control are employed to obtain the solution of
the coupled partial differential equations. The description of the simultaneous heat and mass
transfer phenomena is analysed through the aspects of Lu thermophysical parameter variation
and graphic illustration.
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1. INTRODUCTION

The simultaneous heat and mass transfer in capillary porous media is especially important in
the current technological development. In recent years, the GITT (Generalised Integral Transform
Technique), associated with analytical-numerical hybrid methods, became possible to alternatively
obtain better solutions to some convection and diffusion-convection advanced problems (Cotta,
1993, 1998; Cotta & Mikhailov, 1998; Ribeiro et al.,1993; Duarte et al., 1998). If compared to
methods denominated purely numeric, like the Finite Element Method and Finite Difference
Method, the GITT presents some advantages, such as: relevant reduction of CPU time; no use of
meshes (factor that is accentuated in multidimensional problems); automatic error control; direct
numeric determination of the function in a point without need of numeric processing of previous
states and versatility of the method in hybridisation  with others.  As disadvantages it is mentioned
the limited number of users, complex boundary surfaces and hyperbolic problems



Without loss of generality, the GITT formalisms consist of adopting a transform-inverse pair,
being assumed a group of associated auxiliary problems of Sturm-Liouville type. The original
partial differential equation (PDE or system of equations) is transformed to an ordinary
differential system of ODE’s. This eliminate all spatial dependence from original co-ordinates. The
computational effort will only be necessary to solve an 1D problem.

The drying Luikov problem on his original form is expressed by a coupled parabolic system
for different combinations of boundary conditions, including complex cases (Ribeiro et al.,1993;
Cotta, 1993 and Luikov, 1980). Typical examples are the drying of wood, ceramics,
pharmaceutical and agriculture products, and also the moisture transfer through components of
building materials and soils (Ribeiro et al., 1998). Historically, (Ribeiro et al., 1993 and 1995)
observed that some authors pointed out some numerical difficulties associated to the solution
aspects found on variations of Luikov problems, caused by analytical coupling characteristics or a
non-easy calculus of complex eigenvalues and consequently named them as a non-attractive
problem class. The analytical-numerical characteristics of GITT permitted alternative solutions to
the Luikov problems. For this mentioned non-attractive cases (Ribeiro et al., 1993 and 1995;
Duarte, 1998; Cotta, 1993 and Duarte et al., 1997) presented a general approach using the GITT
formalisms when it was assumed decoupled associated auxiliary problems of Sturm-Liouville
type. So, it was definitively possible to avoid complex eigenvalues, to adopt a prescribed error
and to obtain a stable and systematic solution. Recently, (Pandey et al., 1998) using Laplace
transform technique alternatively presented an exact solution to a linear variant of Luikov problem
in a spherical co-ordinate system and critically commented the influence of complex eigenvalues
on the temperature and moisture distributions.

In the next section, as a application of the mentioned GITT formalisms, it will be presented a
three-dimensional Luikov variant problem, with prescribed potentials at the boundaries. Without
loss of generality, the principal solution steps are pointed out.

2. ANALYSIS

Without loss of generality and according the GITT formalisms extended to the Luikov
problem (Ribeiro et al., 1993 and 1995; Duarte, 1998; Cotta, 1993 and Duarte et al., 1997), let
the particular case of the Luikov dimensionless equations over the region V, (X ∈  V) ⇒  (0 < X <
1, 0 < Y < 1, 0 < Z < 1), and the boundary surface S, that is mathematically rearranged and
presented as follows (Duarte et al., 1997; Duarte, 1998 and Lewis, 1996):
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the initial and mathematically rearranged boundary conditions are,
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Lu expresses the Luikov number (ratio between the mass and thermal diffusivities in the
porous medium), Pn is the Posnov number (the relative decrease on moisture potential, caused by
a certain temperature gradient via the thermogradient effect), Ko is the Kossovitch number (ratio
between the amount of heat needed for the vaporisation of all liquid in the porous media and the
energy necessary to heat the humid body), ε is the phase-change criterion (if ε = 0 means that all
moisture in the  porous body is on a liquid phase, if ε = 1, all moisture is on a vapour phase). KXY

=ly/lx and KXZ =lz/lx are the aspect ratio for the porous media and ly, lx and lz are their
correspondent characteristic lengths.

Physically, the Luikov number expresses the rate between the mechanisms of mass to heat
transport in the porous body. Therefore, as Lu is made larger, the growth of the characteristic
velocity of mass transfer becomes more significant than the corresponding variation for the
characteristic velocity of heat transfer. If  Luikov is smaller, the inverse effect is expected.

According to the GITT formalisms, to accelerate the convergence rate, this mathematical
problem could be decoupled in a particular and homogeneous parts (Cotta, 1993; Duarte &
Ribeiro 1997, 1998 and Ribeiro et al., 1993, 1995). The particular component, 4ks, is easily
calculated and its solution has the following form (k=1,2 for temperature and moisture):
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The homogeneous part, 4kh, would be now easy and exactly solved, since the solutions of the
following three pairs of available classical decoupled eigenfunction problems of Sturm-Liouville
type are available:
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where the subscripts i,j,l characterise the number of eigenfunctions necessary to achieve the
prescribed  numerical error in the inverse formula, that are presented in the next equations.
Elementary sinus or cosines formula express the correspondent eigenvalues for this focused
Sturm-Liouville problems

These auxiliary problems allow the definition of the following integral transform pairs,
necessary for the solution of the homogeneous problem (k=1,2):

Inverse,

∑ ∑ ∑ ΘΦΓΨ=Θ
∞

=

∞

=

∞

=1 1 1
2/12/12/1

)()()()(
1

),,,(
i j l

kijlklkjki
klkjki

kh ZYX
PMN

ZYX ττ                      (19.a,b)

Transform,

dXdYdZZYX
PMN

ZYX
kh

klkjki

klkjki
kijl ),,,(

)()()(
)(

1

0

1

0

1

0
2/12/12/1

ττ Θ∫ ∫ ∫
ΦΓΨ

=Θ                        (20.a,b)

The normalisation integrals are,
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Eigenvalues and eigenfunctions are easily numerically calculated. Using the “transform”
concept over the Luikov equation system and the auxiliary problems and, after truncation to a
sufficient order N, for a prescribed convergence, it results a transform constant coefficient
ordinary differential equations system:
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 Now applying  the GITT formalism to the initial conditions on the homogeneous problem, it
is possible to obtain the initial transform conditions, as follows:
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Equations (24.a,b) and (25) can now be easily numerically solved through matrix eigenvalue
analysis or well-established algorithms (Cotta, 1993; Duarte, 1998; Ribeiro et al., 1995; IMSL,
1994; Wolfran, 1998 and Fortran PowerStation, 1995). After this, temperature and moisture
potentials are computed from Eqns. (9.a,b) and (19.a,b).

3. RESULTS

The main required computational effort for this 3D problem is to solve a ordinary differential
equations system (initial value problem, Eqns. (24) and (25). In other words, this calculus basically
depends of “W”, the independent variable and the other calculations represents less than 1% of
CPU time. Observe that there no mash generation for the spatial variables (x,y,z). If it was
adopted the Finite Element Method or Finite Difference Method, computationally it would be
necessary to solve the problem in all the space domain (x,y,z) at each time step, to perform a 3D
mash generation and its control. This factors increase the CPU time and algorithm implementation.
By other hand, in the case of GITT choice, to solve 1D, 2D or 3D Luikov problems and compare
their CPU time, there is a small CPU increase (Duarte, 1998), with a variation between 5% to
10%. This effect can be predict analysing Eqn. (19.a or 19.b): notice that for each respective
solution, to express the associated analytical formula of inversion (non expanded formulae), are
necessary 1, 2 or 3 eigenfunctions (it was discussed that the main requested computational effort
is to solve the initial value problem, expressed by Eqns. (24) and (25).  As consequence, this CPU
characteristic is very promising in the case of the solution of other multidimensional problems.



To exemplify, it is chosen a relative error target of 10-4 and the compiler Fortran
PowerStation 4.0. To achieve the prescribed numerical error the generated system is truncated
with N�72, for each expansion required. The thermophysical parameters used are listed in the
Table below:

Table 1. Numerical values of the parameters.

Ko 7,009
Pn 5,556
H 0,3
lx 100 mm
ly 25 mm
lz 30 mm

For this parameters and agreement with a convenient graphic visualisation of the problem, a
typical run took less than 30 sec. in a Pentium 233 CPU with 128 Mb of RAM memory and for
the following dimensionless time, W (W =5,0; W =14,0 ). Figures (1) and (2) show the variations on
the dimensionless temperature (Θ1) and moisture (Θ2) potential distributions for Y=0,0, Z=0,0 and
at different values of Lu parameter (Lu=0,0030, Lu=0,0035, Lu=0,0040). It should be observed
that the Luikov is approximately 10-3. Consequently,  the mass transfer process is more inertial
than the associated heat transfer process, as it can be observed by the time variation behaviour of
dimensionless moisture and temperature distributions in Figs. (2) and (1). For the same
dimensionless time, if Lu is made larger, the drying effect in porous media becomes more
significant, and also as time is made larger, the temperature potential on the body decreases.
Physically, this behaviour is expected, because a certain amount of energy is requested to the
liquid-vapour phase-change process and mass diffusion in the porous body, consequently causing
the decrease of temperature in the medium.

In summary, one can conclude that larger Lu thermophysical values induce a faster drying
behaviour and this characteristic is economically more attractive for some industrial purposes.

In recent years there is a new tendency of programming using analytical-numerical approaches
combined with declarative symbolic computation (Wolfran, 1998), this was recently  named as
hybrid computation (Cotta & Mikhailov, 1998 and Duarte et al., 1998). Intelligent and interactive
characteristics can be utilised to implement the algorithms through functional programming and
rule based programming (Gray,1998 and Hughes, 1989), permitting to the programmer create
rules that automatically generate steps of programming, that permit, for instance, the manipulation
of extensive and or repetitive analytical advanced calculus. This is not possible using procedural
programming (C or Fortran). The combination of this tools open a new scenario of advanced
programming and approximate more and more the code of the reality contained in the original
analytical problem. As consequence, it is expected that in the future that the programmer can
improve convergence problems, generate code more intelligent, interactive and easily modifiable.



Figure 1 - Evolution of temperature profiles
during drying process. Pn=5.556, Ko=7.009,
H=0,3.

Figure 2 - Same as left, for moisture profiles.
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